NOTES

Luminescence of Barium Magnesium Sulfate

The luminescence of V^{5+} , Ce^{3+} , Eu^{3+} , Tb^{3+} , W^{6+} , and Pb^{2+} in barium magnesium sulfate, BaMg $(SO_4)_2$, is reported. Results are discussed in relation to the crystal structure and the Eu²⁺ luminescence in this compound reported earlier.

Recently Ryan et al. (1) have reported the existence of a compound $BaMg(SO_4)_2$ and the remarkable luminescence of the Eu²⁺ ion in this host lattice. The emission spectrum at low temperatures consists of a number of sharp lines that were attributed to transitions from the ${}^{6}P_{5/2}$ and ${}^{6}P_{7/2}$ levels to the ${}^{8}S_{7/2}$ level within the $4f^7$ configuration and their phonon replicas. The excitation spectrum of this luminescence shows transitions to the seven ${}^{7}F_{1}$ levels of the Eu³⁺ core imposed on top of the lowest crystal field state of the additional 5d electron. This corresponds to weak exchange interaction between the $4f^{6}$ and 5d electrons. To explain these phenomena the crystal field at the Eu^{2+} site in $BaMg(SO_4)_2$ should be weak and the degree of covalency high (1). We have recently made a crystal structure proposal for $BaMg(SO_4)_2$ from powder data (2). BaMg $(SO_4)_2$ is isomorphous with the waterfree alums (3). This implies 12 coordination for Ba²⁺ in a hexagonally close-packed way and 6 coordination for Mg^{2+} in a trigonal prism. The structure contains layers consisting of sulfate tetrahedra separated alternately by Ba^{2+} layers and Mg^{2+} layers. It is the purpose of this paper to report on the luminescence of some other activators in this lattice and to explain the reported Eu²⁺ luminescence from the crystal structural data.

Samples were prepared as described before (2). The performance of the optical measurements was similar to those in earlier papers (4).

The following activators showed efficient luminescence at room temperature; V⁵⁺ (compensated with Al³⁺, Cr³⁺, or La³⁺), Ce³⁺

Pb²⁺. It was very hard to introduce europium in the trivalent state, but we obtained some samples with characteristic Eu³⁺ emission using V^{5+} compensation. The Ce³⁺ and Eu³⁺ ions were used to investigate the crystal-field at the Ba^{2+} site of $BaMg(SO_4)_2$. The Pb²⁺ ion was applied to study the influence of exchange on the energy levels. No luminescence was observed for W⁶⁺ in the isomorphous KA1 $(SO_4)_2$. Table I surveys the results obtained at room temperature. These are not strikingly different at lower temperatures. The Eu³⁺ Ion

and Tb^{3+} (compensated with P^{5+}), W^{6+} , and

In addition to weak emission from the ${}^{5}D_{1}$ level the Eu^{3+} ion in $BaMg(SO_4)_2$ shows the usual red emission from the ${}^{5}D_{0}$ level. There is one line corresponding with the ${}^{5}D_{0}-{}^{7}F_{1}$ transition (595 nm) and two lines corresponding with the ${}^{5}D_{0}-{}^{7}F_{2}$ transition (616 and 619 nm). The ${}^{5}D_{0}-{}^{7}F_{0}$ line is missing. These numbers agree with the site symmetry D_3 of the Ba²⁺ site in our structure proposal.

The Ce³⁺ Ion

The emission and excitation band of the luminescence of Ce^{3+} in $BaMg(SO_4)_2$ lies at remarkably short wavelengths in comparison with those in other Ce^{3+} -activated oxides (5, 6). As argued in Ref. (6) this is strong evidence for a weak crystal field at the Ce^{3+} ion. The variation of the Ce³⁺ emission in oxides is also impressive if one considers BaMg(SO₄)₂:Ce with emission maximum at about 32 500 cm^{-1} as the higher-energy limit and $Y_3Al_5O_{12}$:Ce

Copyright © 1976 by Academic Press, Inc. All rights of reproduction in any form reserved. Printed in Great Britain

TABLE I

Luminescence Properties of Some Activators in $BaMg(SO_4)_2$ at Room Temperature

Composition (activator concentration 1 at. %)	Maximum of emission band (nm)	Maximum of excitation band (nm)
$BaMg(SO_4)_2 - W^{6+}$	505	290
$BaMg(SO_4)_2 - Pb^{2+}$	350	$\simeq 215$
$BaMg(SO_4)_2 - V^{5+},$ Al ³⁺	530ª	325ª
$BaMg(SO_4)_2-Ce^{3+},$ P ⁵⁺	305	270
BaMg(SO ₄) ₂ -Tb ³⁺ , P ⁵⁺	b	$\simeq 250$
BaMg(SO ₄) ₂ -Eu ³⁺ , V^{5+}	595, 616, 619 ^c	—

^a Similar results for La³⁺ or Cr³⁺ compensation.

^b Characteristic emission from ${}^{5}D_{3}$ and ${}^{5}D_{4}$ level.

^c Also some weak emission from ${}^{5}D_{1}$ level.

with about 18 200 cm^{-1} as the lower-energy limit (6).

The Pb²⁺ Ion

The emission and excitation band of Pb^{2+} in $BaMg(SO_4)_2$ is very similar to those in $BaSO_4$ and $CaSO_4$ (7), but they are situated at somewhat higher energy in the double sulfate. Due to the insensitivity of our apparatus below 250 nm the values of the excitation band are not very accurate.

The Eu²⁺ emission

The hypothesis on the crystal structure of $BaMg(SO_4)_2$ made by Ryan et al. (1) to explain the Eu²⁺ luminescence in this compound can now be tested. All our results indicate indeed a weak crystal field at the large cation site: the short wavelength absorption of Ce³⁺, twelve coordination and the probably long Eu²⁺-O²⁻ distances. A great degree of covalency at this site can be imagined, if one realizes the structure of the compounds. Sulfate layers are surrounded on one side by Ba²⁺ layers and on the other side by Mg²⁺ ions. Consequently the sulfate layers will be polarized and electronic charge is removed

from the Ba²⁺ layer to the sulfate layer. A great degree of covalency results in weak exchange interaction between the $4f^{6}$ and 5d electrons of Eu²⁺. This in turn should also be true for the 6s and 6p electrons in the excited state of the Pb²⁺ ion. Weak exchange should lift the position of the emitting and absorbing ${}^{3}P_{1}$ level. This corresponds with the observed relatively short-wavelength absorption and emission of the Pb²⁺ ion.

The W⁶⁺ Emission

It is also possible to introduce W⁶⁺ in the lattice (on sulfate sites). The tungstate tetrahedron should experience a strong, trigonal field in this structure. The luminescence of this group in $BaMg(SO_4)_2$ is not unusual, but the emission and excitation bands are at long wavelengths compared with the tungstate emission in the alkaline earth sulfates (8). At the same time the quenching temperature of the tungstate luminescence in the mixed sulfate is high, 435°K. The value for CaWO₄ is $410^{\circ}K$ and for SrWO₄ and BaWO₄ much lower; for MgWO₄ (with tungstate octahedra) 460°K has been reported (9). The difference between tetrahedral tungstate luminescence in the double sulfate and the alkaline earth tungstates (or sulfates) is not easy to explain. Two factors may be of importance. The trigonal field at the tetrahedron in BaMg $(SO_4)_2$ will result in splitting of the regularly tetrahedral levels. As a consequence the energy difference between the highest filled and the lowest empty molecular orbital will decrease, so that excitation and emission bands shift to lower energies. The relatively high quenching temperature of the luminescence may be due to the nature of the surroundings of the tungstate tetrahedron. On one side the Mg²⁺ ions represent a stiffer surroundings than the larger alkaline-earth ions; on the other side the tungstate oxygen ion sees sulfate oxygen ions which will also restrict expansion of the tungstate group upon expansion. Due to the structural arrangement the Ba²⁺ ions do not play an important role in counteracting an expansion of the tungstate tetrahedron. Restricted expansion implies a higher quenching temperature, in agreement with our observation.

Note, finally, that the tungstate group in $KA1(SO_4)_2$ does not luminesce. The waterfree alum has c/a = 1.7, the double sulfate 1.5. The stronger extension of the alum in the *c*-direction is expected to increase the distances in this direction, so that the arguments mentioned above are no longer valid.

The V⁵⁺ Emission

The vanadate emission does not depend on the way in which the V^{5+} ion (on S^{6+} sites) is charge-compensated. This indicates that there is no association of the vanadium ion and its compensator as observed in other sulfates (4). The yellow emission of the vanadate group is efficient and its quenching temperature is far above room temperature.

References

 F. M. RYAN, W. LEHMANN, D. W. FELDMAN, AND J. MURPHY, J. Electrochem. Soc. 121, 1475 (1974).

- 2. G. BLASSE AND G. P. M. VAN DEN HEUVEL, J. Inorg. Nucl. Chem., 38, 876 (1976).
- R. W. G. WYCKOFF, "Crystal Structures", 2nd ed. Vol. 3, p. 166, Interscience, New York. (1965)
- 4. W. T. DRAAI AND G. BLASSE, *Phys. Stat. Sol.* (a) 21, 569 (1974).
- 5. A. BRIL AND H. A. KLASENS, *Philips Res. Repts.* 7, 421 (1952).
- G. BLASSE AND A. BRIL, J. Chem. Phys. 47, 5139 (1967); 51, 3252 (1969).
- 7. G. BLASSE, Chem. Phys. Letters 35, 299 (1975).
- 8. Y. KOTERA, M. YONEMURA, AND T. SEKINE, J. *Electrochem. Soc.* 108, 540 (1961).
- F. A. KRÖGER, "Some Aspects of the Luminescence of Solids", Elsevier, Amsterdam (1948).

G. Blasse G. P. M. van den Heuvel J. Stegenga

Physical Laboratory University of Utrecht Sorbonnelaan 4, Utrecht Netherlands Received December 29, 1975